Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group SO(3)
نویسندگان
چکیده
We show that the m-dimensional Euler–Manakov top on so∗(m) can be represented as a Poisson reduction of an integrable Hamiltonian system on a symplectic extended Stiefel variety V̄(k,m), and present its Lax representation with a rational parameter. We also describe an integrable two-valued symplectic map B on the 4dimensional variety V(2, 3). The map admits two different reductions, namely, to the Lie group SO(3) and to the coalgebra so∗(3). The first reduction provides a discretization of the motion of the classical Euler top in space and has a transparent geometric interpretation, which can be regarded as a discrete version of the celebrated Poinsot model of motion and which inherits some properties of another discrete system, the elliptic billiard. The reduction of B to so∗(3) gives a new explicit discretization of the Euler top in the angular momentum space, which preserves first integrals of the continuous system.
منابع مشابه
extended Stiefel varieties with application to the Euler
We show that the m-dimensional Euler–Manakov top on so∗(m) can be represented as a Poisson reduction of an integrable Hamiltonian system on a symplectic extended Stiefel variety V̄(k,m), and present its Lax representation with a rational parameter. We also describe an integrable two-valued symplectic map B on the 4dimensional variety V(2, 3). The map admits two different reductions, namely, to t...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملIntegrable geodesic flows of non-holonomic metrics
In the present article we show how to produce new examples of integrable dynamical systems of differential geometry origin. This is based on a construction of a canonical Hamiltonian structure for the geodesic flows of Carnot–Carathéodory metrics ([7, 17]) via the Pontryagin maximum principle. This Hamiltonian structure is achieved by introducing Lagrange multipliers bundles being the phase spa...
متن کاملar X iv : m at h - ph / 0 30 70 16 v 1 8 J ul 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗
We consider a class of dynamical systems on a Lie group G with a leftinvariant metric and right-invariant nonholonomic constraints (so called LR systems) and show that, under a generic condition on the constraints, such systems can be regarded as generalized Chaplygin systems on the principle bundle G → Q = G/H , H being a Lie subgroup. In contrast to generic Chaplygin systems, the reductions o...
متن کاملOn the Use of the Lie–Bäcklund Groups in the Context of Asymptotic Integrability
A new approach to the problem of asymptotic integrability of physical systems is developed and applied to the KdV equation with higher-order corrections. A central object of the approach is an integrable reference equation, which is constructed by defining a proper Lie– Bäcklund group of transformations and applying it to the leading order equation. It is shown that the solitary wave solutions ...
متن کامل